skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buason, Paprapee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The inherent nonlinearity of the power flow equations poses significant challenges in accurately modeling power systems, particularly when employing linearized approximations. Although power flow linearizations provide computational efficiency, they can fail to fully capture nonlinear behavior across diverse operating conditions. To improve approximation accuracy, we propose conservative piecewise linear approximations (CPLA) of the power flow equations, which are designed to consistently over- or under-estimate the quantity of interest, ensuring conservative behavior in optimization. The flexibility provided by piecewise linear functions can yield improved accuracy relative to standard linear approximations. However, applying CPLA across all dimensions of the power flow equations could introduce significant computational complexity, especially for large-scale optimization problems. In this paper, we propose a strategy that selectively targets dimensions exhibiting significant nonlinearities. Using a second-order sensitivity analysis, we identify the directions where the power flow equations exhibit the most significant curvature and tailor the CPLAs to improve accuracy in these specific directions. This approach reduces the computational burden while maintaining high accuracy, making it particularly well-suited for mixed-integer programming problems involving the power flow equations. 
    more » « less
    Free, publicly-accessible full text available June 29, 2026
  2. The power flow equations are central to many problems in power system planning, analysis, and control. However, their inherent non-linearity and non-convexity present substantial challenges during problem-solving processes, especially for optimization problems. Accordingly, linear approximations are commonly employed to streamline computations, although this can often entail compromises in accuracy and feasibility. This paper proposes an approach termed Conservative Bias Linear Approximations (CBLA) for addressing these limitations. By minimizing approximation errors across a specified operating range while incorporating conservativeness (over- or under-estimating quantities of interest), CBLA strikes a balance between accuracy and tractability by maintaining linear constraints. By allowing users to design loss functions tailored to the specific approximated function, the bias approximation approach significantly enhances approximation accuracy. We illustrate the effectiveness of our proposed approach through several test cases. 
    more » « less